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Abstract. Goals of fostering ecological resilience are increasingly used to guide U.S. public land manage-
ment in the context of anthropogenic climate change and increasing landscape disturbances. There are,
however, few operational means of assessing the resilience of a landscape or ecosystem. We present a
method to evaluate resilience using simulation modeling. In this method, we use historical conditions (e.g.,
in North America, prior to European settlement), quantified using simulation modeling, to provide a com-
parative reference for contemporary conditions, where substantial departures indicate loss of resilience.
Contemporary ecological conditions are compared statistically to the historical time series to create a resili-
ence index, which can be used to prioritize landscapes for treatment and inform possible treatments.
However, managing for resilience based on historical conditions is tenuous in the Anthropocene, which is
characterized by rapid climate change, extensive human land use, altered disturbance regimes, and exotic
species introductions. To account for the future variability of ecosystems resulting from climate and distur-
bance regime shifts, we augment historical simulations with simulations of ecosystem dynamics under
projected climate and land use changes to assess the degree of departure from benchmark historical condi-
tions. We use a mechanistic landscape model (FireBGCv2) applied to a large landscape in western Mon-
tana, USA, to illustrate the methods presented in this paper. Spatially explicit ecosystem modeling
provides the vehicle to generate the historical and future time series needed to quantify potential resilience
conditions associated with past and potential future conditions. Our methods show that given selection of
a useful set of metrics, managers could use simulations like ours to evaluate potential future management
directions.
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EMERGING TECHNOLOGIES

INTRODUCTION

Management for ecological resilience, man-
dated by some U.S. public land policies, is
intended to guide land stewardship in a context
of profound environmental challenges caused by
complex and potentially novel interactions of
anthropogenic climate changes, shifting fire
regimes, exotic plant, insect, and pathogen inva-
sions, and industrial, agricultural, and urban
development (Moritz and Agudo 2013, Joyce
et al. 2014, Bone et al. 2016, Kolb et al. 2016,
Smith et al. 2016, Stephens et al. 2016, Schoen-
nagel et al. 2017). For example, the National
Cohesive Wildland Fire Management Strategy
identifies creating resilient landscapes as the first
of its three major goals (USDOI and USDA 2014)
and the U.S. Forest Service is mandated to
restore natural resources to be “more resilient to
climate change” as stated in the 2012 National
Forest Planning Rule (USFS 2012). However,
operational protocols for real-world implementa-
tion are not readily available to evaluate or quan-
tify resilience for most regions (Angeler and
Allen 2016, Falk 2016). To manage for ecological
resilience, land managers must have a standard-
ized and scientifically credible method of quanti-
fying resilience based on concrete concepts that
can be translated into multiple use analysis and
planning (Bone et al. 2016, Stephens et al. 2016,
Colavito 2017, Dale et al. 2018).

Quantifying ecological resilience for opera-
tional use confronts many challenges. A first chal-
lenge is adoption of a working definition of
resilience that is appropriate for terrestrial, distur-
bance-prone ecosystems. For example, Gunder-
son’s (2000) definition, “the capacity of a system
to absorb impacts before a threshold is reached
where the system changes into a different state,”
fails to recognize alternative states that are part of
the system, which is similar to Holling’s (1973)
definition of ecological resilience as “a measure of
the persistence of systems and of their ability to
absorb change and disturbance and still maintain
the same relationships between populations or
state variable.” Other authors define resilience as
the time required for a system to return to a
steady state following a perturbation (Ives 1995),
assuming that the system has a single or global
equilibrium condition (Mittelbach et al. 1995,
Neubert and Caswell 1997). These definitions are
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limited in an operational context because they are
focused on single disturbance events and do not
explicitly recognize (1) potential for multiple
states; (2) spatial and temporal domains of eco-
logical dynamics; (3) inherent properties of the
perturbed system; (4) disturbance regimes (type,
duration, frequency, and intensity); and (5) poten-
tial for multiple interacting disturbances with
synergistic or additive effects (Loehman et al.
2014, Fisichelli et al. 2016). For example, for sys-
tems with inherent, fire-adapted characteristics, a
lack of disturbance (e.g., fire exclusion) over a
long time period may create a new ecological
state with low resilience as defined above (Mer-
schel et al. 2014, Stephens et al. 2016). In dry for-
ests of interior western North America, where
historically frequent fire often maintained open
forests dominated by large, fire-tolerant trees
(Veblen et al. 2000, Savage and Mast 2005, Hess-
burg et al. 2015, Stephens et al. 2016), limited
competition increased tree vigor, which in turn
increased the ability of the fire-adapted trees to
withstand insects, diseases, and fire, that is, con-
ferring resilience to other disturbances (Bentz
et al. 2010, van Mantgem et al. 2016). The exclu-
sion of fire over the past century has heightened
competitive stress among trees and increased sur-
face, canopy, and ladder fuel loads, causing
higher surface fire intensities, greater crown fire
spread, and higher tree mortality than occurred
historically. These interacting disturbances incre-
ase the potential for conversion from forests to
persistent open savannas, shrublands, or grass-
lands after fire (Coop et al. 2016, Walker et al.
2018), resulting in a loss of resilience (Savage and
Mast 2005, Collins et al. 2016).

A second challenge to operationalizing models
of ecosystem resilience is the selection of the num-
ber and type of variables to use to represent resili-
ence; to be used effectively, these variables must
align with multiple management objectives and
alternatives (Keane 2012, Bone et al. 2016). Choos-
ing only one or two assessment variables may
ignore other important ecosystem attributes that
contribute greatly to both resilience and manage-
ment objectives, but including too many variables
in an analysis may overcomplicate an already
complex process (Moritz et al. 2005). Calculating
resilience from only species composition vari-
ables, for example, may fail to capture key com-
ponents of demography or development, such as
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structure and multiple canopy layers, or keystone
ecosystem processes (Zedler 1996). Ideally, the
variables used to evaluate resilience must be
readily measurable in the field and represent attri-
butes that are used commonly in land manage-
ment planning (Bone et al. 2016).

A third challenge is scale: Over what scales of
time and space should resilience be evaluated?
An analysis area that is too small (e.g., a stand),
for example, might ignore the influence of adja-
cent lands on resilience, whereas an area that is
too large may be inappropriate for planning man-
agement actions (Karau and Keane 2007, Keane
2012). Suitable timescales will vary by ecosystem
and productivity gradients and should match spe-
cies life history traits. For example, success of tree
regeneration after a fire is often used as a measure
of resilience (Stevens-Rumann et al. 2018), but
successful tree regeneration may take decades in
some forest types, such as after burns in high-ele-
vation settings (Agee and Smith 1984, O’Connor
et al. 2014). Additionally, bounding the ecological
context for resilience is important. A parking lot,
strip mine, or an area dominated by exotic spe-
cies, for example, may be resilient in that they are
difficult to alter to a different state, but not ecolog-
ically healthy, socially desirable, or a viable man-
agement target.

We propose that an operational resilience met-
ric must first have a descriptive foundation that
matches the resolution and details of the analyti-
cal procedure (Dale et al. 2018), but be simple
enough to be understood and computed by man-
agers and scientists (Colavito 2017). The resili-
ence metric uses a benchmark or reference
condition to form the basis of comparison across
appropriate time and space scales and ecological
context (Cissel et al. 1994, Swanson et al. 1994,
Laughlin et al. 2004). As advocated by Seidl
et al. (2016), reference ranges of variability can
be used to “locate and delineate the basins of
attraction of a system...[to]...measure resili-
ence.” Contemporary and projected future condi-
tions can then be compared to this reference to
determine departures, and to calculate a statisti-
cal index of departure of contemporary or future
conditions to the historical reference period
(Hessburg et al. 1999, Swetnam et al. 1999).

As in Seidl et al. (2016), we propose to use
historical reference conditions as a benchmark
for characterizing and quantifying ecological
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resilience for land management. Historical condi-
tions have been used extensively and success-
fully as references, benchmarks, or targets by
researchers and land managers over the last two
decades (Hessburg et al. 1999, Keane et al. 2007,
Dickinson 2014). The concept behind historical
range and variation (HRV) is that historical
ecosystem characteristics, described by manage-
ment-relevant variables such as burned area, spe-
cies composition, or patch size distribution,
represent the broad envelope of responses possi-
ble for a persistent (resilient) ecosystem under
natural perturbations of climate, competitive
stress, disturbances, and other stressors (Fig. 1).
The HRV concept captures the fact that ecosys-
tems are dynamic and highly variable, and their
potential responses to changing conditions are
consequently best represented by past variability
of ecological characteristics (Veblen 2003).

A next critical step in the use of HRV for evalu-
ating resilience is the quantification of historical
conditions at the appropriate scale, context, and
level of realism (Keane 2012). HRV has been
described for many ecosystems across the western
United States using a wide variety of techniques
(see Keane et al. 2009). Time series HRV estimates
can be generated for any scale of analysis, espe-
cially if they are produced by simulation models
(Keane et al. 2015). The degree of departure of
contemporary or future conditions from historical
analogs can then be used as a resilience metric for
prioritizing ecosystems or landscapes for treat-
ment and to inform potential treatments (Morgan
et al. 1994, Landres et al. 1999). In this paper, we
describe the use of simulation modeling as a
means for generating the reference time series for
quantifying HRV that is then used to calculate
resilience metrics to inform land management.

The use of HRV as a benchmark to guide future
management has been challenged, primarily
because climate and other environmental condi-
tions are changing so rapidly that the future may
be significantly different than analogs in the
ecologically relevant past (Millar and Woolfenden
1999, Millar et al. 2007, Shive et al. 2014). As cli-
mate projections suggest, future environments
may become so distinct from the past that, at
some point, managing to maintain strict HRV
may be impractical if not irrelevant (Millar and
Woolfenden 1999, Millar et al. 2007). While HRV
may reflect the range of conditions under which
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Fig. 1. Four illustrations of the use of HRV from Keane et al. (2009): (A) the envelope of historical conditions,
(B) simulated historical and current landscape conditions for different communities on a high-elevation land-
scape in Montana, USA, (C) a 500-yr simulation of relative abundance of community types on a landscape in
Utah, and (D) different trajectories of post-disturbance landscape.

the current flora and fauna have evolved, future, (Falk and Millar 2016). On the other hand, ecosys-
no-analog climate regimes may make it difficult tems possess powerful stabilizing legacies that
to manage landscapes within historical envelopes can buffer the impacts of change, including
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topoclimatic refugia, genetic adaptations to
emerging conditions, and unexpressed pheno-
typic variation (Johnstone et al. 2016). On balance,
we posit that HRV remains a valuable tool to
bracket potential ecosystem responses and frame
resilient management goals (Alagona et al. 2012,
Seidl et al. 2016). We do not suggest that man-
agers ignore future climates; instead, we present a
way to map HRV onto multiple future ranges of
variability (FRV) to manage for resilience.

In this paper, we propose a method (called
hereafter “the HRV-resilience method”) for quan-
tifying resilience for ecological applications,
based on a resilience index that evaluates statisti-
cally significant departures from HRV. We use a
spatially explicit ecosystem simulation model
(FireBGCv2; Keane et al. 2011) to generate HRV
time series—the resilience envelope for a particu-
lar landscape (Seidl et al. 2016)—and potential
FRVs. The comparison of FRVs with HRV
allowed us to explore potential effects of chang-
ing climate on ecosystem resilience, and to iden-
tify any overlap between HRV and FRV time
series that might indicate possible future target
areas for resilience management (Hansen et al.
2014). We use simulated data for a landscape in
western Montana, USA, to illustrate this method.
Our approach is intended for scientists and man-
agers who are attempting to integrate measures
of ecological resilience into research and land
management planning.

THE RESILIENCE FRAMEWORK

Background

The ball-and-cup model is the most widely rec-
ognized concept of ecological resilience (Holling
1973; Fig. 2). An ecosystem (the ball) remains
within a set of bounding conditions (sides of the
cup), representing a resilient state because when
perturbed, recovery trajectories are convergent to
the bottom of the cup (by gravitational analogy).
Perturbations—such as wildfires or extreme cli-
mate episodes—can act on the ecosystem with
sufficient force to move the ball across a thresh-
old (cup lip) into a different resilient state (new
cup). As a heuristic, the ball-and-cup model is
intuitive (Nolting and Abbott 2016), but is lim-
ited in its suitability for translation to operational
metrics (Desjardins et al. 2015), particularly
for complex, multiscale, and highly dynamic
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Thresholde ------

Ecological resilience concept

Fig. 2. The theoretical ball-and-cup diagram used to
depict ecological resilience as introduced by Holling
(1973).

disturbance-adapted ecosystems. For example, in
the simple heuristic, the ball returns to the cup
bottom following perturbation; this implies that
ecosystems always return to the same stable,
steady state after disturbance, and remain in this
state until perturbed again. In nature, ecosystems
are highly dynamic over time and space and
rarely return to the same state after disturbance,
or by the same trajectory (Suding et al. 2004).
Recovery pathways are often hysteretic, and a
range of forces are always acting on the position
and trajectory of the ecosystem (ball), influencing
pre- and post-disturbance structure, composi-
tion, and distribution of the biota (Pickett and
White 1985, Pickett et al. 1987). Further, the ball-
and-cup model does not portray ecosystems’ spa-
tial heterogeneity (i.e., large, flat cup bottom) or
temporal variability (i.e., the shape of the cup
can change over time; Desjardins et al. 2015),
attributes that influence biotic diversity, resis-
tance to disturbance, and overall ecosystem func-
tion (Hansen et al. 1991, Lehman and Tilman
2000). The slope and height of the sides of the
cup represent the magnitude of the perturbation
needed to move the ball across the lip of the cup.
However, the magnitude is always relative to the
force acting on the ball and the position of the
ball in the cup; some forces, such as exotic inva-
sions or decadal climate change, move the ball to
a new state by accumulated pressure (Stevens
and Falk 2009). Other forces, such as large punc-
tuated disturbances, rapid human development,
or extreme climate episodes, can shift ecosystem
states abruptly. Lastly, the ball-and-cup model is
implicitly univariate, whereas community and
ecosystem resilience are inherently multivariate
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problems with multiple driver and response vari-
ables that may not act in concert (Gunderson
2000, Desjardins et al. 2015, Palmer et al. 2016).

Important in the context of climatic changes
and other disturbances, the ball-and-cup model
can reflect both discrete (pulse) disturbances and
more long-lasting (press) stressors (Bender et al.
1984). The height of the sides of the cup repre-
sents the magnitude of either a single perturba-
tion or the cumulative effects of persistent stress,
such as drought or multiple disturbance events.
Ecosystems can be perturbed by multiple inter-
acting forces, some of which require little force to
move the ball to a new state because they operate
across spatiotemporal domains (Creutzburg
et al. 2015). For example, invasion of sagebrush-
steppe communities in the U.S. Great Basin by
the non-native annual cheatgrass (Bromus tecto-
rum) stresses native communities both via direct
resource competition and indirectly through
changes in the fire regime (Whisenant 1990, Bill-
ings 1992) that can convert broad areas rapidly
to persistent cheatgrass monocultures. Other
ecosystems may experience apparently severe
disturbances that rarely drive the ball out of the
cup; the widespread North American interior
lodgepole pine (Pinus contorta var. contorta)
ecosystem, for example, commonly experiences
high-intensity, stand-replacing fires that kill most
trees, but the species is adapted to populate post-
fire environments via cone serotiny (Turner et al.
1999, Schoennagel et al. 2008). Yet, a low-inten-
sity fire that burns young lodgepole pine stands
before saplings have produced serotinous cones
may shift the ecosystem from a forest to a grass-
land or shrubland that may require centuries for
pine to re-invade (Pierce and Taylor 2011, Clark
et al. 2017). This delay in the recovery time does
not mean that the system is not resilient, but that
the magnitude of disturbance may not necessar-
ily predict the magnitude or duration of ecologi-
cal response.

Our HRV-resilience model

Our HRV-resilience model can be visualized as
the movement of a marble (ecosystem or land-
scape) in two-dimensional phase space (flat plane
or table; Fig. 3). The dimensions of the table
define the biophysical envelope or fundamental
niche space of key system variables, such as vege-
tation composition and structure, that are
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important indicators of ecological pattern and
process and are also relevant for management. In
this sense, the table is analogous to the basin in
the ball-and-cup model, with the difference that
by being planar, the table does not imply the exis-
tence of a single, stable steady state. A system'’s
fundamental setting is finite, because some forces,
such as meteor impacts, human development,
and volcanic eruptions, can push the ecosystem
(marble) off the table and onto another domain
(another biophysical envelope). The marble is
constantly acted on by exogenous forces, causing
it to move (range) through various states on the
table, each an expression of realized niche space.
We illustrate four major forces (arrows) in this
paper—climate, disturbance, ecological succes-
sion, and human activity—but other forces could
be used to represent the leading influence on
specific ecosystems, or to account for evolutionary
processes. The direction of the arrows can vary
over time and may or may not be consistent and
equal among forces.

Because exogenous (climate, disturbance,
humans) and endogenous (succession, evolution)
forces act continually on the ecosystem, it is con-
stantly in a state of flux as indicated by the path
of the marble over time (Fig. 3A). However, dur-
ing periods of more rapid environmental change,
such as the Pleistocene-Holocene transition or
the current emergence of the Anthropocene, the
path of the system may respond to secular trends
in the climate or disturbance signal, developing a
non-zero net trajectory in phase space (Fig. 3B;
Bond et al. 2005). Paleoecological records indi-
cate major shifts in species composition, hydrol-
ogy, and fire regimes in many regions of North
America over the last 4000 yr of the Holocene
(Gavin et al. 2007, Whitlock etal. 2011),
although there is considerable variation as repre-
sented by the long trajectory (Fig. 3B). In general,
our knowledge of ecosystem paths is confined to
the time domain of existing data for the land-
scape, as there are few detailed data sets of suffi-
cient temporal depth, spatial extent, and
appropriate resolution, to evaluate millennial-
scale historical dynamics (Keane et al. 2009).

Our modeling HRV-resilience method requires
two types of data: values for variables used to
describe the current state of the landscape or
ecosystem and its representative HRV time series
(Fig. 3C). Our starting assumption in using HRV
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Fig. 3. The marble and table analogy to illustrate the concept of resilience. (A) The marble’s position represents
the state of a hypothetical forest system in two dimensions at any given time; the path varies over time depend-
ing on the spatial and temporal domain of evaluation and the environmental forces (arrows) acting on the mar-
ble. In this example, the forces are climate, disturbance, humans, and succession. (B) Realignment of drivers for
the last 4000 yr produces a trend driven by warming climate and increasing rates of disturbance. (C) HRV
(colored red line circle) is defined using 800-100 yr BP because of limited historical data and highest relevance to
contemporary conditions. Cumulative human influence on ecosystem states and trajectories remains relatively
small and non-directional during this period. (D) Recent (last 100 yr) conditions have pushed the ecosystem
(current state) outside of the 800-yr HRV envelope, as climate and disturbance regimes become more aligned
and stronger, forcing the realignment of successional trajectories. Human influences become dominant during
this period. Projections of the ecosystem under future climate by simulation models (blue and red lines) may or
may not overlap with HRYV, illustrated here for two future climate change scenarios (IPCC RCP4.5-blue and

RCP8.5-red).

as a reference for resilience is that ecosystems
operating within HRV for key variables are resili-
ent ipso facto because their behavior falls within
the bounds of ecosystem responses (cup in Fig. 2;
HRV domain in Fig. 3B). When the ecosystem
(marble) is outside of HRV for key variables, we
infer that ecosystems are less resilient because
ecosystem structure and composition may not
facilitate an expected return to HRV conditions
following disturbance. Thus, the departure of
current conditions from HRV can be used
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operationally as an index of resilience: The
lower the departure value, the more resilient the
landscape.

Variations of this method could be used to
evaluate resilience of the contemporary land-
scapes or ecosystems with respect to future
climate change, exotic invasions, or land man-
agement activities. Managers can augment HRV
departure analysis with similar analyses of cur-
rent conditions compared to simulated time ser-
ies of future ranges and variations (FRVs) of a
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landscape or ecosystem (Fig. 3D; Moritz et al.
2013, Hansen et al. 2014). With different assump-
tions about climate (e.g., low or high emissions)
and land management (e.g., fuel treatments, fire
suppression), various future scenarios can be
modeled. From these projections, we can deter-
mine whether FRV envelopes overlap with the
HRYV envelope. Where overlaps exist, they can be
evaluated as possible focal management areas
for resiliency. We acknowledge that the estima-
tion of FRVs using simulation entails uncertainty
as mentioned previously. Nonetheless, it can rep-
resent quantitatively our best expectations of
future conditions and thereby provide useful
information informing the design and implemen-
tation of possible restoration measures (Hansen
et al. 2014).

MovVING FROM CONCEPT TO APPLICATION

Creating HRV and FRV time series

To apply the HRV- resilience method, we used
simulation modeling to derive time series repre-
senting HRV and FRVs. Simulations provide the
necessary temporally deep, spatially explicit his-
torical data that can be difficult to obtain else-
where (Humphries and Bourgeron 2001, Keane
et al. 2009, Dickinson 2014). Moreover, modeling
provides a single, consistent platform for generat-
ing the required data to characterize HRV for
multiple ecological attributes and for generating
projections of FRV under future climates. Impor-
tantly in the current context, modeling allows the
generation of multiple FRVs that include both
future climates and various resource management
strategies. We recognize the limitations of a
simulation approach to quantify HRV and FR—
particularly all models simplify reality and are
subject to bias from input parameters and model
mechanics. Because of this, it is essential to per-
form model validations to quantify uncertainty in
predictions (Keane 2012, Keane et al. 2015).

The example presented here was generated
using the mechanistic landscape model Fire-
BGCv2 (Keane et al. 2011) as implemented for
the 128,000-ha East Fork of the Bitterroot River
(EFBR) watershed, located in the interior north-
ern Rocky Mountains in the Bitterroot National
Forest, Montana, USA. The lower elevations of
the EFBR are dry, mixed-conifer ecosystems of
ponderosa pine (Pinus ponderosa var. ponderosa)
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and Douglas-fir (Pseudotsuga menziesii var. glauca)
generally with a primarily frequent, low-severity
fire regime (Holsinger et al. 2014). Vegetation at
montane elevations is mixed-conifer forest (pri-
marily lodgepole pine, Douglas-fir, and sub-
alpine fir (Abies lasiocarpa)) with mixed-severity
fire regimes, while high elevations are whitebark
pine (Pinus albicaulis), subalpine fir, and spruce
(Picea engelmannii) forests with a long fire-free
intervals and relatively high-severity fire regimes
(Table 1). The EFBR has been used in past
FireBGCv2 simulation studies with its initializa-
tion, parameterization, calibration, and valida-
tion described in various papers (Loehman et al.
2011, 2017, Holsinger et al. 2014, Clark et al.
2017). Holsinger et al. (2014) parameterized and
calibrated the model for the EFBR fire histories
that represent fire regimes approximately 500 yr
BP. We simulated historical conditions (i.e., no
fire suppression or land management, using a
cycling daily weather stream from 1950 to 2005)
and three future scenarios that combined future
climate (CRM-C5 RCP8.5 [+5.5°C, 95% baseline
precipitation]) with three wildfire management
scenarios representing varying levels of fire

Table 1. The tree species (scientific and common
names) that were included in the FireBGCv2 simula-
tions; species names in bold (F) indicate that the
species is fire-adapted, while non-bold species are
fire-sensitive.

Scientific name and Common name and fire

abbreviation adapted designation (F)
Abies lasiocarpa, ABLA Subalpine fir
Larix occidentalis, LAOC Western larch (F)
Larix lyallii, LALY Alpine larch
Pinus albicaulis, PIAL Whitebark pine (F)

Pinus contorta, PICO

Pinus engelmannii, PIEN
Pinus flexilis, PIFL

Pinus ponderosa, PIPO
Populus tremuloides, POTR
Pinus monticola, PIMO
Pseudotsuga menziesii, PSME
Thuja plicata, THPL

Tsuga heterophylla, TSHE
Shrubs, SHRB

Riparian herb, RHRB

Grass, GRSS

Lodgepole pine (F)
Engelmann spruce
Limber pine
Ponderosa pine (F)
Quaking aspen (F)
Western white pine (F)
Douglas-fir (F)
Western red cedar
Western hemlock
Upland shrublands
Wetland herbaceous
communities
Grassland-dominated
communities
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Table 2. Details of the simulations used to generate
historical landscape variability (HRV) and three sce-
narios of future ranges and variations (FRVs).

Simulation
and code Values for each level
Historical
HRV Historical fire regime, contemporary climate
(baseline)
Future
FRV1 No fire management (no fires suppressed);
CRM-C5 RCP8.5 climate (+5.5°C, 95% baseline
Pprecipitation)
FRV2 Idealized fire management (50% fires
suppressed); CRM-C5 RCP8.5 climate (+5.5°C,
95% baseline precipitation)
FRV3 Contemporary fire management (98% fires

suppressed); CRM-C5 RCP8.5 climate (+5.5°C,
95% baseline precipitation)

Notes: We simulated the EFBR landscape for 500 yr for the
HRV and FRV scenarios. The landscape was inventoried in
20092010 to describe current conditions, which we used to
quantify initial conditions (Holsinger et al. 2014). We generated
values for seven output variables (Table 3) every 10 yr for the
last 100 yr of simulation for each of five replicates for a total of
100 observations (we removed the first 100 yr to eliminate the
influence of initial conditions).

KEANE ET AL.

suppression (0%, FRV1; 50%, FRV2; 98%, FRV3;
Table 2). Field data measured in 2009-2010 (Hol-
singer et al. 2014) were used to quantify contem-
porary conditions and to initialize 500-yr
simulations, and we used only the last 400 yr of
output to eliminate the influence of initial condi-
tions. We produced five replicates per scenario
and produced output at ten-year intervals, for a
total of 200 observations per scenario. We ana-
lyzed 14 landscape-level response variables com-
monly used in land management (Table 3).

Quantifying resilience using single and multiple
response variables

We used box-and-whisker plots to summarize
HRYV for one variable (univariate) and principal
components analysis (PCA) to describe HRV for
multiple variables (multivariate) to quantify resili-
ence and produce resilience indices based on the
departure of current conditions from HRV. Com-
parison of these two approaches illustrates rela-
tive strengths and drawbacks of using multiple

Table 3. Response variables that were output from the FireBGCv2 model and used in the multivariate analysis.

Loadings
Variable Code PC1 PC2 Description Units
Composition FAD 0.29 —0.10  Proportion of the landscape occupied by the Percent
fire-adapted species (FAD) and fire-sensitive species
(ESS), respectively
FSS -029  0.10
Structure Seed 0.36 0.11 The proportion of the landscape occupied by each of Percent
five structural stages (seedling, saplings, pole,
mature, large trees, and very large trees)
Sap 0.12 0.46
Pole -0.34 —-0.20
Mat 0.01 —-0.38
Lrg 0.23 0.34
VLrg 0.10 0.45
Basal area BA —0.38 0.13  Average basal area across all stands on the landscape m?/ha
Coarse woody debris CWD  -0.31 0.31 Average loading of CWD (logs greater than 8 cm in kg/m?
diameter) across all stands in the landscape
Fine woody debris FWD  —-037 020  Average loading of FWD (woody fuel particles less kg/m?
than 8 cm diameter) across all stands in the
landscape
Outflow FLOW  0.16 0.05  Amount of surface water flowing out of a stand each kg water/m?
year averaged across all stands
Net primary productivity NPP —0.04 —0.30 Average biomass production of the stand across the kg C/m?
landscape
Area burned BURN 0.32 —0.08  Average annual area burned ha

Notes: Included in this table are the variable codes used across other figures, the loadings of each variable in the PCA for the
axis of the first two principal components (PC1, PC2) for the East Fork Bitterroot River (EFBR) landscape, a description of the

variables, and the variable units.
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variables to represent HRV in the context of shift-
ing climate and disturbance regimes.

Univariate HRV.—Our univariate method uses a
single key variable to evaluate the departure of
current conditions from HRV and FRV to com-
pute resilience indexes. We used average tree
basal area (BA, m?/ha) calculated across all stands
in the EFBR landscape from FireBGCv2 output;
BA is an important metric to forest managers as it
is used as a measure of forest productivity and
biomass. Boxes in univariate box-and-whisker
diagrams show median, 25th, and 75th percentile
BA (Fig. 4). We used Student’s t-tests (a0 = 0.05) to
compare current to HRV and FRV time series.

Range and variation of BA differed among the
four scenarios (Fig. 4). The current BA (Present)
is well within the HRV interquartile range (IQR,
25-75th percentile), indicating that this variable
is not significantly departed from the modeled
HRV (P < 0.001). The median BA for the FRV3
scenario also falls within the HRV IQR (i.e., is not

KEANE ET AL.

significantly departed). The FRV3 IQR is nar-
rower and median BA is higher (pairwise t-tests,
P < 0.001) than for the FRV1 and FRV2 scenarios
because the high (98%) level of fire suppression
implemented in this scenario minimizes fire-
caused biomass loss. The FRV2 and FRV1 scenar-
ios produce progressively lower median BA, con-
sistent with expected lower fire suppression
levels and increased fire-caused biomass loss.
The zone of overlap in the IQR between each
FRYV scenario and the HRV scenario indicates the
percent of simulation replicate-years (200) where
the comparison variable (BA) resides within the
HRV distribution of that variable. For FRV2, BA
responses are outside of the HRV-resilience
envelope for at least half of the simulation years
(P < 0.001). There is almost no zone of overlap
between HRV and FRV1 because tree mortality
from frequent fires and likely climate stress
results in persistently lower BA than the HRV
reference.

HRV

Present
30 1

Basal area (mzlha)
N
(4]

FRV1

FRV3

FRV2

20 1

Range of Variability

Fig. 4. An illustration comparing historical (HRV) and future (FRV) variability in basal area (m*/ha) variability
compared with current conditions on the EFBR landscape (Present: the initial conditions at the start of the simu-
lation). There appears to be a zone of overlap between HRV and FRV3, which may provide a possible reference
for management. FRV1, FRV2, and FRV3 are future simulations with RCP8.5 climate with 0%, 50%, and 98% of
fire ignitions suppressed, respectively. The box in this figure represents the 25th and 75th interquartiles, and the

whiskers represent the range of the data.

ECOSPHERE *%* www.esajournals.org

September 2018 %* Volume 9(9) *¢ Article 02414



EMERGING TECHNOLOGIES

In the univariate method, a simple percentile
number can be used as a resilience index. In our
example above, we calculated the percentile in
which the current (Present) landscape BA resides
within the HRV distribution of BA (Present was
in the 64th percentile) and then used that per-
centile as a resilience score (64) where 50 would
be high resilience and below 25 and above 75
would be low resilience. Other central tendency
statistics can be used to determine where in the
HRV BA probability distribution is the current
value for BA and whether it is significantly differ-
ent (departed) from the HRV value. For current
BA in the EFBR, the probability of the current
landscape condition in the HRV distribution is
0.69, which is less than our designated alpha level

0 o
o~
[®]
o

-2

-4

*Present
-2 -1

KEANE ET AL.

(P > 0.05), so this landscape could be considered
resilient. We also calculated a resilience index for
each FRV scenario where pairwise t-tests indicate
significant departure from HRV (P > 0.05; Steele
et al. 2006). In our example, the two scenarios
where BA was significantly departed from HRV
are FRV1 and FRV2.

Multivariate HRV.—We used PCA to assess mul-
tivariate landscape resilience for the 14 variables
(Table 3) that were used to represent an HRV and
the contemporary conditions (Fig. 5). Relative
component loadings show that NPP, FLOW, and
three structural stages (Sap, Mat, and VLrg) have
the least influence on landscape dynamics (e.g.,
exert the least force on the marble on the table).
Multivariate approaches capture the interplay

490

PC1

Fig. 5. Results of the principal components analysis of the output from FireBGCv2 for the HRV scenario

(Table 2) that represents the movement of the EFBR landscape in multivariate space. Each dot is a year of simula-

tion, and each color represents a century. The condition of today’s landscape is shown by the green asterisk in the
bottom left of the graph, which was the initial condition of the landscape at the start of simulation. It is obvious
that conditions of today’s landscape are well outside of the point cloud portrayed by the HRV simulation across

the multiple variables in Table 3.
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Climate: —HRV— RCP-85

Fig. 6. Results of PCA of FireBGCv2 simulations for the EFBR landscape for the historical scenario (HRV; blue
dots, reference) and for the three future scenarios (red dots; FRV1, FRV2, FRV3; Table 2) that are three fire suppres-
sion scenarios (no suppression, 50% ignitions suppressed, 98% ignitions suppressed) under an RCP8.5 climate (A,
C, E). Also shown are simplifications of the scatterplots with circles that contain 68% of the variation in the spread
of the points for the three FRV scenarios (B, D, F). The green asterisk at the lower left of graphs A, C, and E repre-
sents the condition of today’s landscape. FRV1 is shown in A and B, FRV2 in C and D, and FRV3 in E and F. Vari-
able names in B, D, and F are defined in Table 3 and indicate the important variables in the PC1 and PC2 scores.

among multiple structuring factors that can be components (PC1, PC2), which together explained
used to characterize complex ecosystems (Dray about 60% of the variance in the simulation vari-
et al. 2012). We defined the dimensions of our ables (loadings of each of the 14 variables for both
HRV analysis space using the first two principal PC1 and PC2 are detailed in Table 3). The track of
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the marble (ecosystem) on the table (analysis
space) is the connection of each reported year
(dot) in PC1-PC2 space for all simulated years
across all five replicates (Fig. 5). Unlike the uni-
variate BA analysis, the current condition of the
EFBR landscape as measured in 2010 (green aster-
isk) lies well outside the point cloud for HRV (i.e.,
departed from historical reference conditions).
The large departure of years 100 to 120 from the
primary HRV cloud is because it takes more than
a century to eliminate initial effects from the
model, and the initial EFBR conditions reflect
100 yr of fire exclusion. Also evident in the graph
is the effect of drift in ecosystem condition per-
haps from climatic changes (Keane et al. 2008).

Comparison of PCA results across the three
FRV climate and fire management scenarios and
HRYV scenario provides insight into the potential
impacts of changing climate and fire regimes on
future landscape resilience (Fig. 6). Unlike results
from the univariate analysis (BA; Fig. 5), all three
fire management scenarios (0, 50, and 98% fire
suppression) under RCP8.5 climate depart from
HRYV, especially FRV3. Moreover, the state of the
contemporary landscape (green asterisk) is well
outside the PC1-PC2 point clouds of the HRV
and of all three FRVs, indicating that it has low
resilience when multiple variables are used,
regardless of climate or fire management sce-
nario. This illustrates the value of using multiple
variables when evaluating resilience. The zones
of overlap among the three future fire manage-
ment scenarios and the HRV scenario become
smaller as suppression increases; the overlap for
FRV1 and FRV2 scenarios (Fig. 6B, D, F) includes
all of the HRV space, such that any treatment or
wildfire that moves the landscape toward HRV
should be more viable in the future. There
appear to be two separate point clouds for each
of the three FRV scenarios (Fig. 6A, C, E) which
is the result of the slow ramping of predicted
climate over the first 100 yr of simulation
(Holsinger et al. 2014).

Creating a resilience metric from multivariate
time series is a bit more difficult. We used a sta-
tistical approach to determine if the current con-
dition is significantly outside the PC1-PC2
centroid, and the magnitude of that distance rela-
tive to the HRV point cloud provided us a suit-
able resilience index. In our example, we
arbitrarily set the confidence ellipse of HRV at
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0.68 (i.e., an ellipse containing 68% of HRV obser-
vations). We then computed the probability of
obtaining the value for the current EFBR land-
scape (Present) as a random draw from the HRV
point distribution. This test returned a value of
0.005, indicating substantial departure of current
conditions from HRYV; this probability could be
used as a departure value and resilience index.
The multivariate PCA HRV-resilience approach
can also employ box-and-whisker diagrams
using the scores of PC1 from the HRV time series
to compare to current conditions similar to our
use of BA above.

Managing for resilience

Enhancing resilience, especially in fire-
excluded forests, will probably entail some
degree of either ecosystem restoration or accep-
tance of change (Stephens et al. 2016, Falk 2017).
Many ecological restoration projects have used
HRV of ecosystem characteristics, such as fire
regimes, as a reference for designing treatments
that can return stands or landscapes to historical
envelopes, which are generally regarded as ipso
facto resilient (White and Walker 1997, Landres
et al. 1999, Dickinson 2014). Future restoration
treatments should be designed to move the cur-
rent landscape in the direction of HRV, while also
tracking anticipated future conditions (Falk
1990). For example, the current BA in EFBR in
Fig. 4 is well within HRV, but BA is lower in
FRV1 and FRV2 scenarios. To keep EFBR near
HRYV and prepare for the uncertain future, wild-
land fire use (letting some wildfires burn under
acceptable conditions) in remote areas or silvicul-
tural thinnings combined with prescribed
burning could reduce BA, especially the BA of
fire-sensitive species, and enhance the vigor and
growth of fire-adapted species in the EFBR land-
scape, leading to an overall increase in future
resilience (Stephens et al. 2009). With this limited
univariate example, it is interesting that greater
fire suppression in the future (FRV3) may keep
the EFBR landscape within HRV under new cli-
mates, but other important variables that are not
represented in the single variable analysis might
change this result (Fig. 4).

Designing treatments that enhance resilience
based on multivariate analysis may be more
challenging because of the reduction of many
variables to a small number of synthetic axes.
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However, the results presented in our multivari-
ate example (Fig. 6, Table 2) suggest the possibil-
ity of managing for the variables with the highest
factor loadings as important drivers of departure
(Table 2). In this case, PCA suggests that resili-
ence may be most positively affected by increas-
ing seedling (Seed) stands using wildland fire
use and increasing large (Lrg) diameter struc-
tural stages by thinning and prescribed burning
in overly dense stands, which would ensure that
some smaller diameter pole structural conditions
persisted to grow into the large tree-dominated
structural stages. Appropriate actions to move
the EFBR toward a zone of HRV-FRV overlap
might include reducing the level of fire suppres-
sion (increasing wildland fire use), because the
greatest FRV-HRV overlaps occur when some
wildfires are allowed to burn (0% and 50% sup-
pression), and providing protection from uncon-
trolled wildfire for the large trees on the
landscape via radial thinning, fuel treatments,
and prescribed burning to retain those late seral
structural stages.

Managers may want to aim for targets in the
center part of the overlap zone or even below
the zone to account for the future dynamics of
the system. Such anticipatory management may
increase treatment effectiveness and longevity
(Millar and Stephenson 2015, Bradford et al.
2018). For example, in Fig. 4 (univariate case)
there is little overlap across distributions of HRV
and FRV1; HRV basal areas are higher than
FRV1 basal areas because of high fire occurrence
in the future. Land managers, however, may
de-emphasize treatments that move the land-
scape toward FRV1 because of uncertainty in
both climate and management projections for the
future (Rupp et al. 2013). Instead, managers may
aim for basal areas that are closer to the low end
of the HRV distribution (lower basal areas) while
also falling within FRV1. In this sense, approxi-
mating the HRV remains a reasonable null crite-
rion rather than aiming for projected targets with
high climatic and ecological uncertainty (Mellert
et al. 2015, Luce et al. 2016).

SUMMARY
In this paper, we demonstrate a simulation

modeling method for quantifying resilience for
the purpose of guiding management decisions.
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The operative assumption of this HRV-resilience
method is that ecosystems are resilient when they
resemble conditions represented by the historical
range of variability (HRV), because the HRV rep-
resents the recent conditions under which most
of the biota have evolved, and under which con-
temporary ecological communities have formed
(Bunnell 1995). At the core of our method is the
use of simulation modeling to quantify the HRV
time series, which are compared statistically to
current conditions to compute a resilience index.
Looking forward, rapid climate change, ongoing
land degradation, altered and accelerated distur-
bance regimes, exotic species invasions, and a
host of other human impacts that are occurring
today and into the future demand a still broader
assessment than using HRV alone (Falk 2017). To
address this challenge, we integrated a compan-
ion future range of variation (FRV) evaluation
into our method to help guide future land man-
agement planning. This augmentation is only
possible using simulation modeling. Overlaps
between HRV and FRVs may provide ideal tar-
gets for specific management-oriented environ-
mental variables. We demonstrate variations of
the method using both univariate and multivari-
ate approaches. Inclusion of multiple variables
into the assessment can be accomplished using
PCAs to compress multiple variables into a smal-
ler number of axes that define the response space
of FRV and HRV. We identified several variables
that are important to managers and that drive
differences between current, HRV, and FRV most
strongly (highest factor loadings), and then iden-
tify treatments that enhance these variables. We
show examples of how to deploy this method
into operational use, even in cases where there is
little apparent overlap between the HRV and
FRV. In these cases, managers may want to set
goals that are within HRV but trending toward
the FRV as a hedge, given a future that is unlikely
to be similar to the past, but characterized by
high uncertainty.
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